Addressing Overlapping in Classification with Imbalanced Datasets: A First Multi-objective Approach for Feature and Instance Selection
نویسندگان
چکیده
In classification tasks with imbalanced datasets the distribution of examples between the classes is uneven. However, it is not the imbalance itself which hinders the performance, but there are other related intrinsic data characteristics which have a significance in the final accuracy. Among all, the overlapping between the classes is possibly the most significant one for a correct discrimination between the classes. In this contribution we develop a novel proposal to deal with the former problem developing a multi-objective evolutionary algorithm that optimizes both the number of variables and instances of the problem. Feature selection will allow to simplify the overlapping areas easing the generation of rules to distinguish between the classes, whereas instance selection of samples from both classes will address the imbalance itself by finding the most appropriate class distribution for the learning task, as well as removing noise and difficult borderline examples. Our experimental results, carried out using C4.5 decision tree as baseline classifier, show that this approach is very promising. Our proposal outperforms, with statistical differences, the results obtained with the SMOTE+ENN oversampling technique, which was shown to be a baseline methodology for classification with imbalanced datasets.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets
Imbalanced classification is related to those problems that have an uneven distribution among classes. In addition to the former, when instances are located into the overlapped areas, the correct modeling of the problem becomes harder. Current solutions for both issues are often focused on the binary case study, as multi-class datasets require an additional effort to be addressed. In this resea...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015